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 Molecular Collisions 

 

Of particular interest for chemistry and physics are collisions be-

tween gas particles,  i.e.,  interactions between particles,  neglected 

in the most elementary kinetic theory of gases. As explained previ-

ously, one is in serious difficulty to explain the premises of the ideal-

gas model, with its random motion of the gas particles and their 

characteristic velocity distribution, without invoking, at least im-

plicitly, interactions between the gas particles. For a rigorously 

ideal gas (colliding at most with perfectly reflective rigid walls), 

the speeds (magnitude of velocity) of all particles remain forever 

unchanged. The motion of such ideal-gas particles is strictly along 

straight lines. There is no obvious reason for random motion, except 

for particular, e.g., stadium-like wall geometries. Without interac-

tions, a multi-particle system, more generally a system with many 

degrees of freedom, will not evolve towards its eventual steady state 

(equilibrium), unless it already is in that state. All so-called 

transport processes, such as diffusion, dissipation, friction, etc., are 

dependent on the existence of particle-particle interactions. In the 

following, a few examples of a simple type of interaction are con-

sidered: elastic scattering of atoms at a central potential representing 

the interaction between any two identical atoms.  

 

The Lennard-Jones potential is a suitable candidate to model 

such interactions, as has been 

demonstrated earlier. For simplic-

ity, one can consider the scattering 

in the rest frame of the "target" 

atom hit by a "projectile". The 

non-centrality (off-center) of the 

collision is indicated by the colli-

sion impact parameter b, defined as the distance between two 

Figure 1 
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parallels through the centers of projectile and target, aligned with 

the direction of motion of the projectile (see sketch above). Such 

collisions for Ar atoms can be explored with the MATHCAD code 

MATHCAD_252\Potential_Scatter.mcd. The figures (Fig. 2) below 

show collision trajectories for a projectile with a velocity   (vrel =-

0.2 nm/ps) typical for a temperature of T = 60K. The position of the 

fixed target (and that of the center of the potential) is indicated by a 

blue circle at the origin of the coordinate system. The projectile 

starts out at the upper right (at 1 nm horizontal distance), with its 

initial velocity parallel to the abscissa. The impact parameter is large 

for the trajectory on the left (b=0.7nm) and relatively small for the 

trajectory pictured on the right (b=0.2nm). 

 

Animations of these collisions can also be activated, for the series 

of decreasing impact parameters of b=0.7nm, b=0.5nm, b=0.3nm, 

and b=0.1nm. The collisions become more and more central with 

decreasing impact parameter, leading to trajectories of very different 

character. For large impact parameters b, there is generally only a 

small deflection of the path of the projectile towards the center of 

the potential, since the potential is attractive for large distances. The 
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Ar-Ar Collisions(b=0.7(L),0.2nm(R)) 

Figure 2: Peripheral (left) and central (right) collision 
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scattering of the projectile occurs to "forward" angles, in the general 

direction of its original path. Because of this "grazing" character of 

the collision, the momentum transfer to the target atom, not consid-

ered here explicitly, is relatively small for large impact parameters. 

 

For smaller impact parameters, however, the projectile penetrates 

into the inner region of the interaction potential. Since here, the re-

pulsive core of the potential becomes dominant, the projectile is re-

flected back and moves quickly out of this region. Here, the change 

in direction of the projectile is very large, since it essentially re-

verses its motion. Because the collision is nearly "head-on", the mo-

mentum transfer from the projectile to the target is large. The pro-

jectile loses much, if not all, of its kinetic energy to the target. 

 

At lower projectile energies, 

the influence of the potential 

on the trajectory and, hence, 

the dependence of the scatter-

ing angle on the impact param-

eter, are very different from 

those at higher energies. This is 

demonstrated for the same Ar-

Ar system and a lower relative 

velocity of vrel =-0.16 nm/ps by 

the Fig. 3 on the left. Collisions 

may also be viewed in ani-

mated fashion for the two impact parameters of b=0.7nm and 

b=0.5nm. 

  

At the higher velocity considered earlier, large impact parame-

ters, associated with peripheral (grazing) collisions, led to forward-

angle scattering. At the present, lower velocity, however, the trajec-

tory is affected more strongly by the attractive part of the potential. 
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Figure 3 
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The projectile is attracted to smaller 

distances, is accelerated and pulled 

around by the target until it hits the 

repulsive core of the Lennard-Jones 

potential. Then, it is deflected out-

wards again. Because its direction 

of motion is changed considerably 

in the scattering process, the mo-

mentum transfer from projectile to 

target can be relatively significant 

even at large impact parameters. 

 

For much higher energies, the ef-

fect of the attractive part of the in-

teraction is smaller, it is too weak to deflect the projectile much from 

its original path. Then, one has a simpler situation which may be 

described in some reasonable approximation as scattering off the 

hard, repulsive core of the potential, as "hard-sphere scattering". 

As will be shown below, in this limit, the scattering can be treated 

analytically. 

 

The relation between scattering angle , the asymptotic deflection 

of the projectile out of its original path, and the impact parameter b, 

is called the "deflection function" (b) . This function is character-

istic for the interaction between the particles, here described in terms 

of a conservative potential V(r), the Lennard-Jones potential model-

ing the van der Waals interaction. As can be explored with 

(MATHCAD_252\Potential_Scatter.mcd), the deflection function 

for such a potential has two smooth, monotonic branches, indicating 

deterministic, orderly behavior of the scattering process. The branch 

at large impact parameters is characteristic for an attractive interac-

tion, the one at smaller impact parameters is due to the repulsive 

core of the potential. Both branches are connected by a smooth 

Figure 4:  

Deflection function 
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transition at high enough energies. At a particular (low) energy, a 

so-called "orbiting" singularity may develop, where the projectile 

orbits the target forever on a Kepler trajectory. 

 

In contrast to the orderly behavior of a single scattering process, 

the overall result of multiple scattering 

processes occurring in a gas of many par-

ticles is a randomization of the directions 

of motion of the individual particles and 

the smearing out of the velocity distribu-

tion. This is due to the sensitivity of the 

scattering angle and the transferred mo-

mentum and kinetic-energy loss on the 

exact conditions under which two parti-

cles collide. This sensitivity to initial 

conditions, can be demonstrated experi-

mentally with 

MATHCAD_252\Multpl_Scatter.mcd, a 

simple MATHCAD simulation of a mul-

tiple scattering of an Ar projectile off an ensemble of Ar atoms 

(simulation). To prove the point under stringent conditions, multiple 

scattering is considered for a pro-

jectile impinging on an ordered 

lattice of only 12 atoms (circles), 

rather than a disordered gas of a 

much larger number of particles. 

The lattice constant is about 4.5 

times the range of the Lennard-

Jones potential used in these cal-

culations.  

 Sensitivity to initial Conditions 

in Molecular Scattering 

3 initial 

trajectories  

Figure 5 

Figure 6a 
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Figures 6a and b illustrate the fate of 21 scattering processes with 

the similar initial conditions −  =  +1 10nm y b nm  and x0 =2 nm. The 

Ar projectiles are assumed to 

have all the same initial velocity 

of vx = 0.58 nm/ps in horizontal 

(x) direction. One observes 

clearly on the top panel of the fig-

ure, how the trajectories, all start-

ing at x0= 2 nm, quickly diverge 

after the first or second scattering.  

The deflection function displayed 

in Fig. 6b shows an erratic, non-

smooth behavior. The deflection 

angle depends in a non-predictable fashion on the impact parameter, 

illustrating a high sensitivity to initial conditions.  

 

This multi-scattering process must lead eventually (but not in-

stantaneously!) to "molecular chaos", completely random motion 

of the projectiles. This is true even for scattering off an ordered lat-

tice-like ensemble of target atoms. If the lat-

ter atoms are not bound, but freely movea-

ble, the recoil imparted on them in the indi-

vidual scattering processes will also ran-

domize their positions and velocities. This is 

the basis of the random-velocity assumption 

made in the kinetic theory of gases. 

 

To simplify considerations of particle in-

teractions,  the gas particles will again be as-

sumed to be structureless and to undergo 

purely elastic collisions.  However,  they will 

no longer be idealized as point-like objects,  but assumed to be rigid 

(hard) spheres of diameter di or radius Ri.  This interaction V(r) is 

V(r)

rAB

r

Forbidden

region

Reflection at a hard wall

Figure 7 

Figure 6b 
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infinitely repulsive for cen-

ter-to-center distances r be-

tween two particles A and B 

of less or equal to the touch-

ing distance rAB = RA + RB.  

It is illustrated in the figure 

on the left showing a colli-

sion of a particle with the 

hard core of the potential 

represented by an impene-

trable wall. 

   

The geometry of colli-

sions of projectile particles 

A of average velocity uA 

(omit for convenience the 

usual bar indicating the average) with a target particle B is illustrated 

in the sketch.  Within the time interval t,  a number 

 
2 2

A A A AB A A AB
N V d u t j d t    =   =     =                   

 

of projectiles A collide with a single given fixed target particle B, 

where j uA A A=   is the current den-

sity of the number of projectiles impinging 

per unit time on a unit area.  

 

For a collision to occur,  the distance of 

closest approach between projectile and 

target has to be smaller than the sum of 

the radii of target and projectile, 

 

          R = dAB = (1/2)(dA + dB)      (III.86) 

 

Figure 9 

 Miss,

no collision

 uA

 dB  dA

     R =

(dA+dB)/2

 Target,  B  Projectile,  A

 uA t

 Molecular Collision Geometry

(III.85) 

Figure 8 



U N I V E R S I T Y   O F

ROCHESTER

DEPARTMENT OF CHEMISTRY

CHM 252              W. Udo Schröder

 

8 

 

This implies that, whenever the trajectory of the projectile intercepts 

a disc of area 

 

                                           
AB =  R2

  
 

drawn about the center of particle B,  it will undergo a collision.   

 

The expression in Equ. III.87 is termed geometrical cross section 

for a collision  A→ B.  It can be thought of as the effective size of 

the system of the two colliding particles A and B.  More generally,  

the collision cross section can be imagined to be equal to the effec-

tive size of the projectile-target system,  as given by the range of the 

interaction potential. 

 

Equ. III.85 yields for the collision rate per target particle: 

 

             




N

t
u jA

A A AB A AB= =                      (III.88) 

 

and,  summed over all NB target particles B,  NB times this rate.  The 

quantity jA = A uA is the current density of particles A, the number 

of particles impinging on a unit area per unit time.  With a density 

of particles B of B = NB/V,  one derives for the A-B collision rate 

per unit time t and volume V 

 

       Z
N

V t

N

V

N

t
uAB

AB B A
A B AB AB=


= = 








     (III.89) 

or  

 

                       Z jAB A B AB=      (III.90) 

(III.87)  
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In Equ. III.89,  the average velocity of projectile,  as seen from a 

stationary target has been replaced by the relative velocity between 

target and projectile,   

  u u u uAB AB A B= = +2 2
1 2

e j
/

     (III.91) 

which is the only velocity of physical interest and independent of 

the frame of reference chosen.  The relations in Equ. III.91 will be 

discussed more later on. 

 

The above formalism can be extended to the simple but interest-

ing case of only one gas component A=B. The considerations need 

to be modified slightly,  however.  In a given collision between two 

like particles,  A1 and A2,  either A1 can be viewed as the target (for-

merly B),  while A2 is the projectile (formerly A),  or vice versa.  

Hence, every collision appears twice in a summation over the target 

particles if no restriction is imposed on this summation. Dividing the 

rate calculated with Equ. III.89 by a factor of 2 will account for this 

effect and correct for the double-counting, such that 

According to Equ. III.89, the collision rate is proportional to the 

product of the densities A and B of the two types of particles. 

This is plausible, since the probability PAB for two particles to 

meet is given by the simultaneous probability to have both parti-

cles at the same position at the same time, which is equal to the 

product of the probabilities PA~ A  and PB ~ B to find any of the 

two particles at that position. Similarly, the rate of collisions be-

tween three different particles is proportional to the product of 

the individual probabilities, PABC= PA ·PB ·PC , and hence to the 

product PABC ~A B C of all three particle densities.  
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 Z
N

V t
u jAA

AA
A AA AA A A AA=


=  = 





1

2

1

2

2     (III.92) 

 

The difference in the procedures to calculate the number of pos-

sible collisions for 

gases of equal or 

different types of 

projectile and target 

particles is illus-

trated in the sketch 

for a simple exam-

ple of 3 particles:   

 

In the case of un-

equal target (B) and 

projectile (A) parti-

cles,  the number of 

collisions is trivially 

given by the prod-

uct of the numbers 

of targets and pro-

jectiles.  However,  if all particles are equal (A),  then one can take 

any one of them and consider it a target,  which can be hit by (NA - 

1) projectiles.  Since one has NA such choices,  the number of colli-

sions is proportional to the product NA·(NA-1).  But,  in this method 

of counting,  any given encounter of particles i and j occurs twice,  

once where particle i represents the projectile and once where it 

stands for the target.  However,  the distinction between projectile 

and target is artificial.  All that matters is the encounter, i.e., the in-

teraction.  Hence,  the number of distinct interactions, represented 

by double arrows in the sketch, is proportional to ½NA· (NA-1).  For 

 

NA 

ZAB  NB· NA = 1· 2 = 2 

 

 

ZAA  (½)NA· (NA -1) =  

                 = (½)·3· 2 = 3 

 

ZAA  (½)NA
2  for NA » 1 

NB NA 

Counting Interactions 

 

Figure 10 



U N I V E R S I T Y   O F

ROCHESTER

DEPARTMENT OF CHEMISTRY

CHM 252              W. Udo Schröder

 

11 

 

large numbers of particles,  (NA-1) ≈ NA.  This then results in Equ. 

III.92 for the number of like-particle collisions.    

 

Mathematically,  the calculation of all possible two-

body interactions between N particles is equivalent to calculating 

the number of different pairs that can be formed of N particles.  

This is given by the binomial coefficient  

 

    

N N

N
N N

2 2 2

1

2
1









 =

 −
=   −

!

! ( )!
( )  

 

   where the factorial of N is defined as N! = 1·2·3····N 

 

The relative A-A velocity varies from zero to the sum of the 

speeds of the two collision partners. If the velocity vectors of these 

two particles are independent of each other and randomly oriented, 

then, according to probability theory, the mean square speed  is 

given by the sum of the squares of the individual speeds. The aver-

age of the relative speeds uAA of the two particles can then be iden-

tified with the root-mean square speed, ©uArms , of particle A: 

 

                u u u uAA A A A

2 2 2 22= + =             (III.93a)      

 

or, defining the relative speed uAA as 

 

              u u u u uAA AA rms AA A A rms
:= = = =2 22 2      (III.93b) 

 

With this average speed uAA, one obtains a collision rate of 
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          ZAA =NAA/ Vt =  (1/ 2)(A
2
 © uA rms)  AA   (III.94) 

 

slightly different from that in Equ. III.92, because of the different 

definitions of the velocities uAA and © uA rms. The collision cross 

section is again given by 

          AA =  dA
2        (III.95) 

 

 

  An important quantity characterizing a substance is the mean free 

path   for collisions of its constituents and its relation to the typical 

dimensions of the system under consideration,  e.g.,  the dimension 

of its volume.  The mean free path can be calculated from the dis-

tance x traveled on average by a given gas particle per unit time 

t,  divided by the number, NA of collisions suffered during this 

time. Since one is following here the path of a single chosen (pro-

jectile) particle, one has to rewrite Equ. III.88 for collisions of one 

projectile particle A with other, target particles, which are also of 

type A. In the expression for NA (Equ. III.89), the projectile speed 

uA in the lab should be replaced by the average relative speed in a 

collision, uAA = 2 ©uA rms ( Equ. III.95). Since the distance 

traveled by the projectile is given approximately by   x = ©uA 

rms  t, one derives         

With molecules of diameters of the order of a few times 

10− m (Å) and,  therefore,  the corresponding cross sec-

tions of [ ]   10− m2,  particle velocities of uA  600 m/s,  

typical collision rates are of the order of a few times 10 s 
-1m-3. 
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The particular definition of the relative velocity does not play a ma-

jor role, since approximately the same velocity appears in numerator 

and denominator of Equ. III.96. For order-of-magnitude estimates, 

one can drop the square-root factor in Equ. III.96. One should drop 

this factor, if one considers the interactions of a projectile entering 

the gas volume with a well-defined velocity 

u . Here, the random-

ized velocities of the gas particles almost averages out to zero with 

respect to the projectile. The important difference between this "al-

most" and "exactly" will be discussed in the context of friction. 

 

The important result for  is that the mean free path becomes 

shorter with increasing gas density gas and increasing collision 

(scattering) cross section coll, approximately according to  

 

 

This realistic estimate of a constant mean free path of particles 

seems to imply that there is a constant average attenuation of an en-

semble (e.g., a beam) of N projectiles in a volume of gas (or other) 

absorbing material. However, this is true only on an infinitesimally 

small scale. Consider, for example, N particles impinging from the 

left onto a slab of scattering (or absorbing) material of thickness dx. 

A constant mean free path means that the incoming flux N is 

(III.96)  


 
= =



u

N t

AA

A A AA
 

1

2


 

= 


| |




u

Ncoll gas coll

1
(III.96a) 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/ChIV-1.doc


U N I V E R S I T Y   O F

ROCHESTER

DEPARTMENT OF CHEMISTRY

CHM 252              W. Udo Schröder

 

14 

scattered with a probability dP = dN/N that de-

pends only on the thickness dx, and not on any-

thing else. Then the incoming flux is reduced 

along the path dx 

 

 dN N dx= −                           (III.97) 

 

where the quantity  is the absorption coeffi-

cient associated with this particular scattering process. Integration 

of Equ. III.97 leads to an exponential law for the flux N(x) of parti-

cles that have not been scattered in an absorber of thickness x: 

 

     N x N e xb g b g=  − 0 
                                   (III.98) 

 

The transmission of the absorber, or the survival probability for 

the incoming particles, decreases exponentially with the absorber 

thickness 

     
P x

N x

N
esurv

xb g b gb g= = − 

0



          (III.99) 

 

Correspondingly, the probability for collisions of projectiles with 

the absorber particles can be expressed as 

 

           
P x P x

N N x

N
ecoll surv

xb g b g b g b gb g= − =
−

= − − 1
0

0
1 

 

 

Hence, the absorption coefficient can easily be measured in a 

transmission experiment, where the number of particles penetrating 

and exiting the absorber is compared to the number of those imping-

ing on it on the entrance side. The magnitude of this macroscopic 

Figure 11 

(III.100) 
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absorption coefficient  is, of course, related to the probability for 

the microscopic scattering process, as characterized by the scatter-

ing cross section coll. This connection is easily established from a 

calculation of the mean free path, the average distance for one scat-

tering in the absorber. Considering the case of a thin absorber, one 

obtains a relation between mean free path and absorption coeffi-

cient, 

    


=
1

      (III.101) 

 

Then, inserting expressions for  and , one obtains the relation 

 

              P x e e ecoll

x x x collb g = − = − = −−  − −  1 1 1   
  (III.102) 

 

where  is the density of the absorbing material (e.g.,  = gas)  

 

Now, the properties of an ideal,  interaction-free gas can be 

specified somewhat more quantitatively than was possible before,  

when simply p  0 was postulated: A gas can be considered as es-

sentially interaction-free,  an ideal gas if the mean free path is 

larger than the linear dimension l of the system,  i.e.,   > l, where 

the volume is V  l3.  Then,  there is on average no interaction be-

tween a given particle and the rest of the gas,  during the entire travel 

of the particle from one edge of the volume to the other.  Neverthe-

less, interactions do take place and lead eventually to the equilib-

rium distribution of the ideal gas. The above criterion suggests that 

a gas may be considered as approximately ideal for pressures of the 

order of 

 

           p
k T

l

B

coll


         (III.103) 
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where coll  is the collision cross section.   

 

The derivation of Equ. III.103,  a recommended exercise,  makes 

use of the ideal-gas EOS.  Hence,  for a given pressure p,  the gas at 

the higher temperature T1 behaves more like an ideal gas than one 

at lower temperature T2 < T1.  This is plausible,  because the pres-

sure at higher temperature can be effected by fewer particles collid-

ing with the container walls at higher momenta than at lower tem-

peratures,  where the number of particles in the gas and,  hence,  the 

density have to be much larger to produce the same pressure with 

many more individual collisions.  At room temperatures,  gases are 

close to ideal at pressures up to 10 Pa (  1 atm). 

 

 


